– To, co robi algorytm, musi przynosić wymierne korzyści biznesowe, a AI governance to m.in. nadzór nad tym, jak AI wykorzystuje dane i podejmuje decyzje – mówi Marcin Hadyś, Head of Sales w SAS Polska.

Marcin Hadyś od początku swojej kariery zawodowej był związany z sektorem finansowym, pracując zarówno w firmach konsultingowych, jak i po stronie biznesu. Obecnie nadzoruje sprzedaż rozwiązań SAS w Polsce, skupiając się na generowaniu wartości biznesowej dla klientów.

Dopiero co przeciętny przedsiębiorca zapoznał się z terminem data governance i pojął jego znaczenie, pojawił się nowy termin – AI governance. Co to takiego?

Marcin Hadyś: Otrzymujemy takie pytania od klientów. Mówią nam często, że przecież ich organizacje są już data driven, mają wdrożone data governance albo data strategy, więc po co im coś więcej. Tymczasem o ile AI governance ma części wspólne z data governance, o tyle zakresy znaczeniowe tych pojęć i ich obszary nie pokrywają się. Bo jeśli w przypadku data governance koncentrujemy się na danych, ich źródłach, pochodzeniu, kompletności, jakości itd. – bo bez danych i ich odpowiedniego przygotowania w ogóle nie może być mowy o AI w organizacji – to zagadnienie AI governance jest bardziej wielowymiarowe. Dotyczy ono np. tego, czy w ogóle chcemy część decyzji – których podejmowanie może być zautomatyzowane, bo jest powtarzalne – scedować na tzw. maszynę, a jeśli tak, to jakie to mają być decyzje. Jeśli chcemy wykorzystać w ten sposób AI, powinniśmy wiedzieć, w oparciu o co nasz algorytm podejmuje te decyzje i dlaczego wyniki są takie, a nie inne. Idąc dalej trzeba także wskazać, kto z pracowników ostatecznie ponosi odpowiedzialność za decyzje podejmowane przez sztuczną inteligencję. Ponadto to, co robi algorytm, musi przynosić wymierne korzyści biznesowe, a AI governance to m.in. nadzór nad tym, jak AI wykorzystuje dane i podejmuje decyzje, co zapewnia, że jej działania są zgodne z oczekiwaniami i wartościami firmy.

Jakie zatem wymieniłbyś kluczowe zasady efektywnego i odpowiedzialnego zarządzania AI?

Myślę, że kluczową zasadą jest tu skoncentrowanie się na celu biznesowym podejmowanych działań. W SAS bardzo mocno skupiamy się właśnie na kontekście biznesowym tego, co proponujemy klientom. Nie chodzi przecież o analizowanie danych dla samego analizowania, ale o to, by przynieść firmie wymierną wartość, wymierną korzyść. To jest podstawa, którą zdarza się organizacjom „gubić” w tej całej modzie na AI. Aby sztuczna inteligencja przyniosła korzyści, musi działać w oparciu o zasady, założenia, dzięki którym da się zweryfikować, czy efekty jej działania są zgodne z oczekiwaniami. I to jest właśnie AI governance. To zapewnia transparentność podejmowanych decyzji. Oczywiście odpowiadam na to pytanie w ogromnym skrócie i uproszczeniu, bo należy tu uwzględnić wiele innych obszarów, w tym często omijane budowanie kultury organizacyjnej, wspierającej wykorzystanie AI.

Jakie są najczęstsze wyzwania, z którymi spotykają się firmy w zakresie AI governance i jak SAS pomaga je przezwyciężyć?

Sztuczna inteligencja sama w sobie jest wyzwaniem. Nie ma bowiem jednego rozwiązania, które przyniosłoby prostą odpowiedź, „ile AI” potrzebuje dana organizacja. To jest zawsze kwestia do zdefiniowania przez każdą firmę. I dlatego naszym klientom przypominamy zarówno o tym, że to od nich zależy, które zadania zamierzają powierzyć AI, jak i to, że za każdą decyzją, którą podejmuje maszyna, musi stać człowiek. To on musi brać pod uwagę, czy warunki zewnętrzne, w ramach których algorytm podejmuje decyzje, nie uległy zmianie. To bardzo ważny obszar AI governance. Chodzi tu nie tylko o samo wdrożenie rozwiązania, ale także o jego utrzymanie i monitorowanie, czyli zapewnienie zgodności z rzeczywistością, która zmienia się w czasie. Tu trzeba stale trzymać rękę na pulsie, bo od tego zależy skuteczność decyzji biznesowych, podejmowanych przez firmę.

Wyzwaniem dla wielu branż, np. bankowości, finansów czy ubezpieczeń, jest wytłumaczalność decyzji, które podjęła sztuczna inteligencja. Tu przechodzimy na trochę inny poziom rozmowy, bo znów różne branże i różne firmy będą potrzebować różnego poziomu tejże wytłumaczalności. W świecie finansów akurat ten aspekt jest niezwykle ważny, by zminimalizować ryzyko niewłaściwych decyzji i spełnić wymagania regulacyjne oraz ograniczyć dyskryminowanie określonych osób czy cech, jeśli akurat one mogą wpływać na podejmowaną przez instytucję finansową decyzję (np. udzielenie lub nie kredytu). W DNA naszych rozwiązań zapewniona jest ta wytłumaczalność – nigdy nie oferujemy firmom tzw. black boxa, który wypluwa wyniki bez możliwości nadzoru nad tym, co się dzieje w całym procesie.

Podczas naszych rozmów z klientami, wobec swoistego hype’u na GenAI, często musimy także tłumaczyć, że nie chodzi o to, by w organizacji tworzyć jakieś nowe procesy biznesowe, które wykonywać będzie sztuczna inteligencja. Skuteczne wykorzystanie AI to jej implementacja w tych procesach, które już mają miejsce w firmie. Takie pragmatyczne podejście często też jest wyzwaniem. Organizacje muszą iść dziś w stronę poszukiwania tych obszarów, w których AI może udoskonalić obecne procesy, co pozwoli osadzić narzędzia AI w biznesowym kontekście.

Czyli AI ma być dopełnieniem do tego, co dzieje się w firmie?

Dopełnieniem, uzupełnieniem, a następnie rozwinięciem. Pojmuję AI jako technologię wspierającą podejmowanie decyzji biznesowych, a generatywną sztuczną inteligencję jako dodatek do tradycyjnych rozwiązań AI w biznesie. To się wszystko musi łączyć. Wspólnym mianownikiem wszystkich zastosowań sztucznej inteligencji powinna być potrzeba biznesowa. Nie ma sensu szukanie use case’ów na siłę tylko po to, by pochwalić się wdrożeniem.

Jakie są różnice między różnymi dostawcami technologii AI i na co zwracać uwagę przy wyborze odpowiedniego partnera technologicznego?

MH: Myślę, że przede wszystkim trzeba tu zwrócić uwagę na to, że na rynku funkcjonują zarówno rozwiązania open source, jak i rozwiązania komercyjne. Te pierwsze wydają się bardziej atrakcyjne, gdyż przez wiele osób postrzegane są jako coś dostępnego „za darmo”. W końcu można je samemu dostosowywać do swoich biznesowych potrzeb. To prawda, tylko trzeba mieć umiejętność kodowania. Może to być właściwym podejściu dla niewielkich organizacji i procesów biznesowych w ograniczonym zakresie wspieranych analityką. Żeby to się powiodło w skali dużej firmy, to umiejętność taką posiadać musi wiele osób – programiści są wtedy potrzebni w każdej komórce albo niezbędny jest hub zrzeszający programistów w ramach całego przedsiębiorstwa. To rodzi zaś wyzwania w postaci kosztów, z których nie wszyscy zdają sobie sprawę, oraz w postaci konieczności przyciągnięcia ludzi z odpowiednimi umiejętnościami. Trzeba mieć to na uwadze, decydując się na tego typu inwestycję i przemyśleć, czy nie lepiej zdecydować się na rozwiązanie, które można dostosować do swoich potrzeb biznesowych nawet wtedy, gdy się nie jest programistą. Tak działa np. SAS Viya, czyli nasza platforma AI, która stanowi odpowiedź zarówno na potrzeby osób potrafiących kodować, jak i tych, które takich umiejętności nie posiadają.

Ponadto ważne jest, aby wybrać dostawcę, który oferuje nie tylko technologię, ale także wsparcie w jej efektywnym wdrażaniu i zarządzaniu nią. Tak właśnie działamy w SAS. Z jednej strony wiemy, co może dziś zaoferować technologia, z drugiej, dzięki bogatemu doświadczeniu w działaniach z biznesem rozumiemy, czego potrzebują firmy. Jesteśmy wiec niejako naturalnie podmiotem, który oba te obszary jest w stanie połączyć i pomóc firmom w osiągnięciu korzyści biznesowej, którą ma przynieść AI.

Czy możesz wskazać takie branże, w których dziś bez AI trudno jest funkcjonować?

Pierwsza, która przychodzi mi na myśl, to branża ubezpieczeniowa. Dziś funkcjonowanie w tym sektorze bez rozwiązania antyfraudowego, wspieranego właśnie analityką i AI, jest niemożliwe. Bo sytuacja, w której firma nie skorzysta z tego typu zabezpieczeń, nie oznacza tylko zwiększonego ryzyka. Oszuści bardzo szybko odkryją brak takich rozwiązań, co spowoduje, że ubezpieczyciel zacznie w mgnieniu oka przyciągać ich do swojej oferty. W efekcie będzie po prostu tracić kapitał i zakończy działalność na skutek braku płynności finansowej. Poza ubezpieczeniami można wspomnieć oczywiście bankowość, telekomunikację, ale także w coraz większym zakresie sektor usług publicznych.

Wyniki badania przeprowadzonego przez Coleman Parkes Research na zlecenie SAS pokazują, że 48% przedsiębiorstw w Polsce wykorzystuje generatywną sztuczną inteligencję, a 46% planuje to zrobić w ciągu najbliższych dwóch lat. Na czele tego zestawienia znalazły się Chiny, gdzie 83% firm zadeklarowało, że korzysta z GenAI, następnie Wielka Brytania – 70% i USA 65%. Jak oceniasz potencjał generatywnej sztucznej inteligencji? Czy zmieni ona sposób funkcjonowania branż w najbliższym czasie?

Tu wszystko zależy od naszego zrozumienia GenAI i umiejętności jej wykorzystania. Jeśli myśląc o tej technologii poprzestaniemy np. na ChatGPT – który jest jedną z dostępnych technologii – i wykorzystaniu go do tworzenia slajdów, pisania maili czy streszczania artykułów, to wejdziemy w ślepą uliczkę. Dlatego musimy sobie uświadomić, że GenAI jest technologią, która bardzo skutecznie usprawnia procesy biznesowe, i nauczyć się ją wykorzystywać. W SAS modele językowe wykorzystujemy np. do tego, by osoba, która nie ma kompetencji programisty, a nawet nie bardzo ma wiedzę o dostępnych danych, mogła przedstawić swoją potrzebę w języku naturalnym, a jej zapytanie było zrozumiane przez AI tak samo, jak kogoś innego, kto innymi słowami opisuje ten sam problem. To tylko jeden drobny przykład wykorzystania GenAI. Po swoistym „hype na GenAI” przyszedł już czas na zastanowienie się, jakie realne korzyści biznesowe może przynieść ta technologia. A jest tego bardzo dużo, przy czym trzeba także pamiętać o ryzykach, które niesie za sobą wdrożenie GenAI bez nadzoru.

Na koniec chciałem zapytać, jak oceniasz stopień adopcji AI i GenAI na polskim rynku? Które obszary lub branże się wyróżniają, a które zostają w tyle?

Wszystko zależy od punktu widzenia. Oczywiście w tym względnie przodują rynki azjatyckie. Niemniej Polska jest bardzo wysoko w tym zestawieniu. A jeśli chodzi o adopcję AI w takich sektorach, jak bankowość i ubezpieczenia, to uważam, że jesteśmy w awangardzie. Za to mam wrażenie, że sektor publiczny mógłby zwiększyć zakres zastosowań sztucznej inteligencji. Widzimy duży potencjał w tym obszarze, który jeszcze nie jest w pełni wykorzystany.

–  AI po prostu pozwala robić różne rzeczy szybciej, bardziej wydajnie, i to jest sedno jej funkcjonowania – mówi Piotr Kaczyński, Senior Business Solutions Manager, SAS Global Technology Practice.

Piotr Kaczyński jest odpowiedzialny za rozwój biznesu w obszarze analityki i integracji systemów, również na styku rozwiązań SAS i narzędzi typu open source. Przez 8 lat prowadził badania nad zbieżnością algorytmów linearyzacji procesów stochastycznych. Od 2003 roku związany z obszarem analityki w zakresie praktycznego wykorzystania modelowania predykcyjnego do prognozowania w sektorze energetycznym. Brał również udział w projektach z zakresu eksploracji danych, BI i prognozowania dla transportu morskiego. Jego głównym zainteresowaniem jest AI i operacjonalizacja analityki w środowiskach produkcyjnych z wykorzystaniem metodologii ModelOps.

Wszyscy dziś mówią sztucznej inteligencji. Czy AI jest zagrożeniem dla ludzkości, czy wręcz przeciwnie – jest niebywałą szansą na rozwiązanie wielu problemów i bolączek? Jaka jest Twoja opinia na ten temat?

Dla mnie sztuczna inteligencja nie jest ani jednym, ani drugim. Tak naprawdę sztuczna inteligencja pojawiła się dawno temu. Przecież już w latach 50. ubiegłego wieku opracowany został koncept perceptronu. Czyli taki sposób obliczeń, który dziś nazywamy AI, był już stosowany od dawna. Udowodniono (choć trochę później), że takie funkcje, będące de facto składowymi modeli analitycznych, pozwalają rozwiązywać różne problemy aproksymacji i klasyfikacji, czyli rozdzielania hiperprzestrzeni na odpowiednie podprzestrzenie. I w zasadzie jedynym, co się zmieniło przez wszystkie te lata i co sprawia, że mamy możliwość stosowania tych algorytmów na co dzień, jest dostępność ogromnej mocy obliczeniowej. Każdy dziś może samemu „wyklikać” klaster z złożony z 10, 20 czy 50 komputerów (oczywiście ponosząc odpowiedni koszt). Natomiast ja upatruję w sztucznej inteligencji ułatwienia realizacji tych najbardziej żmudnych, wymagających ręcznej pracy, czynności. AI po prostu pozwala robić różne rzeczy szybciej, bardziej wydajnie, i to jest sedno jej funkcjonowania.

Kiedyś proces przygotowania obrazu zajmował kilka dni. AI skróciło go do godzin, a nawet minut. Ponadto AI wzbogaciła wielu z nas o kompetencje, których dotąd nie mieliśmy, jak właśnie możliwość tworzenia grafiki, muzyki, filmów. To oczywiście niesie też zagrożenia i możliwość nadużyć. Ostatnio w ramach jednej z prelekcji pokazałem film wygenerowany przez AI, w którym to prezes naszej firmy obiecywał wszystkim uczestnikom spotkania po 10 tys. dolarów premii za udział w wydarzeniu. Wygenerowanie tego filmu zajęło mi  około 5 minut, a sztucznej inteligencji wystarczyło 30 sekund głosu prezesa, żeby wygenerować i włożyć w jego usta w zasadzie dowolny tekst. Oczywiście to może niepokoić, ale jednocześnie pokazuje, jak AI ułatwia wiele działań, jak usprawnia i przyspiesza ludzką pracę.

Kto zatem współcześnie odpowiada za tę zmianę, za ten szybki rozwój AI? Kto ją dziś napędza? Analitycy, biznes, operatorzy centrów danych, społeczeństwo, może sama AI?

Myślę, że ten rozwój dziś po trosze napędza każda z wymienionych grup. Z jednej strony warto popatrzeć na to, kto na tym zarabia. Tu pierwszymi beneficjentami będą operatorzy centrów danych, którzy dostarczają mocy obliczeniowej. Ale równorzędnym beneficjentem z pewnością jest biznes.

Natomiast jeśli popatrzymy na opracowania pokazujące, gdzie stosowana jest generatywna AI, to okaże się, że najczęściej wykorzystują ją działy IT. Pewne działania dla specjalistów IT są po prostu żmudne, a że wiedzą oni, jak je usprawnić, to sami sobie wymyślają narzędzia. Tym bardziej, że usprawnienia dotyczą kwestii powtarzalnych, automatycznych, które nie wymagają angażowania inteligencji „białkowej”, jak w przypadku generowania obrazów.

Na które zastosowania AI powinien zwrócić uwagę biznes?

Na pewno warto przyjrzeć się takim zastosowaniom generatywnej AI, w których, jak sama nazwa wskazuje, coś generujemy, czyli tworzymy dużo tekstu, wiele obrazów i do tego te czynności są powtarzalne. Oczywiście modele fundamentalne można stosować też w przypadku różnych klasyfikacji, ale przykłady pokazują, że tutaj zauważalne są pewne niedociągnięcia i niedokładności. Więc prawdziwą wartość AI na pewno możemy zbudować, jeżeli będziemy ją wykorzystywać do realizacji tych zadań, które wymagają generowania dużej ilości tekstu, kodu, który jest powtarzalny i który można w łatwy sposób zweryfikować. Jednak powinniśmy zakładać możliwość interwencji człowieka w tym procesie, aby mieć pewność, że wygenerowane wyniki są prawidłowe. Dużo prościej jest przeczytać maila i poprawić go, niż pisać od początku całą wiadomość. Dużo prościej jest przeczytać przygotowane przez AI streszczenie wątku np. złożonej przez klienta reklamacji. Gdy operator musi przeczytać całą historię konwersacji, to łatwiej mu będzie po prostu przeczytać streszczenie przygotowane przez generatywną AI. Z drugiej strony pisząc odpowiedź też pewnie dobrze by było, aby taki konsultant miał wygenerowaną sugestię odpowiedzi i tylko ją zweryfikował. To na pewno przyspiesza pracę i pozwala oszczędzić czas. Poza tym, zwiększa to satysfakcję z pracy osobom, które zajmują się tego typu powtarzalnymi działaniami.

Które branże najchętniej wdrażają modele generatywnej sztucznej inteligencji?

Jeżeli mówimy o generatywnej sztucznej inteligencji, to obecnie jest na nią taki hype, że wszystkie branże zaczynają eksperymentować. Natomiast, z mojego doświadczenia wynika, że pierwsze zauroczenie GenAI minęło. Osoby, które faktycznie implementują takie rozwiązania oparte o modele językowe zauważają problemy z ich stosowaniem, dostrzegają ich nieprzewidywalność i „niewyjaśnialność”, czyli trudność w wytłumaczeniu wyników wygenerowanych przez tego typu model. Okazuje się na przykład, że bardzo istotne jest to, w jaki sposób zadamy pytanie algorytmowi. Oczywiście możemy pokazać świetne przykłady, gdzie sztuczna inteligencja doskonale rozwiązuje pewne zadania. Ale gdy rozmawiam z różnymi osobami z firm, z którymi współpracujemy, to pokazują mi oni konkretne przykłady niezrozumiałych działań algorytmów. Na przykład, gdy w zapytaniu skasują jedną spację, to odpowiedź udzielona przez model będzie zupełnie inna, niż kiedy ta spacja w zapytaniu się znajdzie.

Z jednej strony ogólnie wiemy, jak te algorytmy działają, ale z drugiej strony nie umiemy przewidzieć tego, w jaki sposób się zachowają w danej sytuacji. Stąd mam sceptyczną opinię na temat tego, że generatywna sztuczna inteligencja zupełnie zawojuje biznes i zastąpi człowieka. Raczej powinniśmy myśleć o jej wykorzystaniu do działań powtarzalnych, jak generowanie tekstu, który następnie będzie weryfikowany przez pracownika. Na to też wskazuje moje doświadczenie. Implementujemy narzędzia AI w contact center, call center, centrach obsługi klienta i takich departamentach, które muszą po prostu generować dużo odpowiedzi, dużo maili. Co ciekawe, tutaj często też wykorzystujemy modele deep czy machine learningowe, czyli jakby tę sztuczną inteligencję w wersji 1.0, jeśli generatywną AI określimy sobie jako wersję 2.0. Wykorzystujemy te modele do tego, żeby w odpowiedni sposób skonstruować właśnie zapytanie do GenAI.

Bardzo ciekawym zastosowaniem generatywnej AI jest też wykorzystanie jej do interakcji z bardzo skomplikowanymi algorytmami optymalizacji. Optymalizacja to jest stricte matematyka. Tutaj nie dzieje się jakaś wielka magia, nie ma neuronów, warstw, sieci neuronowych i tych wszystkich pięknych pojęć. Tu wszystko opiera się na matematyce, która przynosi konkretną wartość biznesową, bo albo zwiększamy zyski, albo minimalizujemy koszty. Wyobraźmy sobie, że chcemy np. zoptymalizować zużycie wody przy produkcji papieru. Mamy więc pewne parametry wejściowe do tego algorytmu optymalizacji. Jednak sama parametryzacja, sama interakcja z tym algorytmem i zmiana parametrów, a potem uruchomienie optymalizacji, może być trudne. Więc generatywną AI możemy zastosować do tego, żeby w języku naturalnym powiedzieć: „A co by było, gdybyśmy zmienili to i to? Gdybyśmy mieli mniejszy zasób wody? Nie 500 litrów, jak dotychczas, tylko 400?”. I wtedy generatywna AI może uruchomić zagadnienie optymalizacji i odpowiedzieć pewnym wynikiem, który będzie zrozumiały także dla laika. To przykład, że GenAI może być interfejsem do bardziej skomplikowanej maszynerii, która leży pod spodem, a my komunikujemy się z nią za pomocą słów, czyli języka naturalnego.

Oczywiście każde zastosowanie AI w biznesie musi się opłacać. Pamiętajmy, że przecież każde takie rozwiązanie w skali dużej organizacji generuje wymierne koszty, choćby zużywając energię elektryczną. Dlatego w każdym przypadku decyzję o wdrożeniu AI trzeba dobrze przemyśleć. I na pewno warto także skonsultować się ze specjalistami, którzy robią to na co dzień. Choćby po to, żeby usłyszeć ich podpowiedzi, w których obszarach AI może w danym biznesie usprawnić działania.

Jak widzisz rozwój technologii generatywnej AI np. w ciągu 5 najbliższych lat?

Myślę, że przede wszystkim zwiększy się skala jej zastosowań. Raczej nie jestem w stanie sobie wyobrazić żadnego przełomu, nowego odkrycia czy rozwiązania, które miałoby się pojawić – doświadczymy po prostu efektu skali. Do tego będziemy mieli do czynienia z bardziej precyzyjnymi algorytmami. Takimi, które będą mniej halucynować. Z drugiej stronny będziemy umieli bardziej kontrolować i weryfikować czy monitorować to, co  otrzymujemy od różnych modeli generatywnej sztucznej inteligencji. Zapewne w tym też obszarze będzie największy rozwój. Natomiast w przyszłości pewnie znajdziemy takie metody, które będą pozwalały nam mieć większą pewność, że to, co zostało wygenerowane przez AI, jest prawidłowe. Niemniej generatywna sztuczna inteligencja sama w sobie jest przełomem, bo jest technologią transformacyjną. Do takich technologii zaliczyłbym te, które zmieniają świat globalnie, stając się dostępnymi dla każdego, jak koło, pismo, maszyny parowe, elektryczność, internet. To jest z pewnością technologia tej rangi.

Mówisz tutaj o szansach i o pewnych nadziejach. Widzisz może też jakieś zagrożenia w tym wszystkim?

Największym zagrożeniem według mnie jest brak chęci zrozumienia czy pogłębienia wiedzy o świecie i o generatywnej AI ze strony człowieka. Ludzie nie chcą się uczyć, przyjmują pewne rzeczy „z dobrodziejstwem inwentarza”, takimi, jakie je widzą. Oczywiście jest to wynik naturalnej cechy ludzkiego umysłu do pewnego generalizowania. Bo skąd się biorą fejki? Dlaczego są zagrożeniem? Dlatego, że nikt nie zadaje sobie pytania czy, odwołując się do użytego już wcześniej przykładu, prezes dużej firmy może każdemu uczestnikowi konferencji dać 10 tysięcy dolarów. Trzeba cały czas wątpić i zaszczepiać w ludziach gen pozytywnie krytycznego podejścia do tego, co widzą i słyszą.

Czyli znowu wracamy do ludzi, którzy są tutaj najsłabszym ogniwem, a jednocześnie czynnikiem krytycznym. A skoro o ludziach mowa, to warto dziś jeszcze studiować analitykę danych lub informatykę?

Zarówno z wykształcenia, jak i z zamiłowania jestem matematykiem. Jestem przekonany, że kompetencje matematyczno-logiczne zawsze będą cenne. Uważam, że trzeba się uczyć takich rzeczy, które są uniwersalne i w pewien sposób potem będą procentować i zbudują nasze kompetencje. Dlatego na pytanie: „Którego języka programowania dziś się uczyć?” odpowiadam „Nie wiem”. Bo nie tu znajduje się sedno zagadnienia.

Zacytowałbym tutaj mojego idola, czyli największego polskiego matematyka Stefana Banacha. On powtarzał, że: „Dobrym matematykiem jest ten, kto umie znajdować analogie między twierdzeniami; lepszym matematykiem – kto widzi analogie pomiędzy teoriami, a genialnym ten, kto dostrzega analogie między analogiami.” To właśnie możliwość generalizacji, uogólniania i wyprowadzania z tego nowych odkryć, znajdowanie nowych zastosowań jest najistotniejsze.

Jak widać, wszystko tu jest kwestią podejścia, kiedy zaczynamy działać od podstaw i krok za krokiem odkrywamy mechanizmy, schematy, analogie. Natomiast kluczowe jest zrozumienie tego, w jaki sposób coś działa i jakie są tego podstawy. To jest dla mnie sedno studiowania czy generalnie uczenia się i zdobywania wiedzy.

Na koniec zostawiłem jeszcze jedno pytanie. „Feature Store Manager usprawnia przepływ pracy dla projektów związanych ze sztuczną inteligencją i uczeniem maszynowym, znacznie skracając czas potrzebny na wprowadzenie nowych produktów AI na rynek” – czytam w poście na LinkedIn dr. Dwijendra Dwivedi, szefa zespołu ds. AI i IoT w SAS, w którym chwali się, że rozwiązanie to uzyskało ochronę patentową w USA. W poście jesteś wymieniony jako członek zespołu, który realizował ten projekt. Czy mógłbyś opowiedzieć więcej o tym rozwiązaniu?

Tym, co zostało opatentowane, jest tak naprawdę unowocześnienie konceptu, który nazywa się Feature Store, czyli magazyn cech. W projekcie tym nie koncentrowaliśmy się na szeroko rozumianej sztucznej inteligencji czy algorytmach machine learningowych, które służą do tworzenia modeli AI lub ich implementacji. Projekt ten skupiał się na tym, co jest szarą rzeczywistością data scientistów, czyli na kwestii przygotowania danych do tworzenia modeli AI. Zależało nam na tym, aby te dane można było przygotowywać szybciej i prościej, a przede wszystkim w sposób umożliwiający ich ponowne użycie.

Badania różnych globalnych firm doradczych pokazują, że etap opracowania i wyczyszczenia danych w całym cyklu przygotowania analitycznego zabiera najwięcej czasu osobom, które tworzą modele analityczne i je wdrażają. Z drugiej strony to, co dzieje się na tym etapie, w istotny sposób wpływa później na jakość modeli. Zgodnie z zasadą „rubbish in – rubbish out”, jeśli działamy na dobrych, dobrze przygotowanych danych, to i opracowane później na ich podstawie modele są lepsze.

Skoncentrowaliśmy się więc na tym właśnie procesie i stworzyliśmy rozwiązanie, którego biznesowa wartość polega na tym, że pozwala ono data scientistom na wygenerowanie odpowiednich zbiorów danych w sposób zautomatyzowany, przy wykorzystaniu innowacyjnego sposobu naliczania nowych zmiennych. Mówiąc w skrócie: dzięki naszemu rozwiązaniu nowe modele AI mogą być szybciej wdrażane produkcyjnie i można je szybciej aktualizować o nowe dane.

Blog Data Science robię został stworzony po to, aby specjaliści zajmujący się na co dzień danymi, a także zainteresowani pracą w data science i jej entuzjaści, mogli w jednym miejscu znaleźć informacje i ciekawostki na temat najnowszych technologii i ich innowacyjnych zastosowań, sytuacji na rynku pracy, możliwości kształcenia się i rozwoju kompetencji. Na blogu znajdziecie 100 artykułów o różnorodnej tematyce. Wywiady z ekspertami oraz artykuły. W dzisiejszym wpisie przypominamy kilka z tych, które zyskały największą popularność i opisują najbardziej palące zagadnienia, z którymi mierzy się na co dzień zarówno biznes, społeczeństwo, jak i sama branża.


Jeszcze 5 lat temu stanowiska związane z big data, cyberbezpieczeństwem, uczeniem maszynowym czy personalizacją sztucznej inteligencji były uznawane za zawody przyszłości. Dziś wg. raportu LinkedIn, inżynier AI znajduje się wśród 10 najszybciej rozwijających się zawodów w USA. Boom związany z rozwojem sztucznej inteligencji sprawił, że na kierunkach informatycznych polskich uczelni, na jedno miejsce przypada 10 kandydatów. Możemy śmiało powiedzieć, że zainteresowanie zdobywaniem wiedzy i studiami w zakresie uczenia maszynowego i big data obserwujemy również na naszym blogu. To właśnie teksty związane z powyższymi tematami spotkały się z największym zainteresowaniem wśród odbiorców, a są to. 

Rodzaje ML i najpopularniejsze algorytmy. W tym artykule skupiamy się głównie na uczeniu maszynowym, które pomaga rozwiązywać złożone problemy w tak różnych dziedzinach, jak medycyna, bankowość i ubezpieczenia, przemysł czy telekomunikacja. Pokazujemy w nim, że ze względu na różnorodność zagadnień i przypadków, nie istnieje jedno uniwersalne zastosowanie ML, które pomoże rozwiązać dany problem i przedstawiamy kilka narzędzi do wyboru. Przykładem może być uczenie ze wzmocnieniem, które ze wszystkich istniejących technik najbardziej przypomina to, w jaki sposób uczą się ludzie, ponieważ opiera się na metodzie prób i błędów.

Kolejne popularne na blogu artykuły, w których jest bezpośrednio mowa o edukacji  w zakresie data science to Studia big data na polskich uczelniach oraz Studia Analiza Danych i Analityka na polskich uczelniach. Dzisiaj uczelnie w Polsce kształcą studentów na kierunkach takich jak np. Zarządzanie projektami sztucznej inteligencji (Akademia Leona Koźmińskiego), Sztuczna Inteligencja oraz Uczenie maszynowe (Politechnika Gdańska). Politechnika Krakowska  proponuje specjalności związane z AI na kierunkach informatycznych, zaś Politechnika Warszawska oferuje studia podyplomowe MBA AI & Digital Transformation w ramach Szkoły Biznesu. Natomiast jeżeli chodzi o studia w obszarze analizy danych to przykładem może być Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie.

Nie musisz umieć programować, żeby spełnić marzenia o pracy z danymi. To cytat z jednego z najbardziej cenionych artykułów naszego bloga w zakresie edukacji – Mamo, zostałem data scientist. Kim? Danologiem.To właśnie tutaj ukryte są najważniejsze przesłania, które obalają mity dotyczące pracy z danymi. Tak więc, jeżeli wabi Cię praca w data science, to rozpraw się z mitami.

Data Science w biznesie – rozwój firm i bezpieczeństwo danych

Data science odgrywa dziś kluczową rolę w rozwoju firm, wspierając je na wielu płaszczyznach i zapewniając jednocześnie bezpieczeństwo danych. Dzięki ich analizie możliwe jest odkrywanie wzorców i trendów, które mogą być wykorzystane do optymalizacji procesów w przedsiębiorstwie, personalizacji ofert i dopasowania produktów do potrzeb klienta. Data science umożliwia również wykrywanie zagrożeń cybernetycznych oraz ochronę danych osobowych, co wydaje się być kluczowe z punktu widzenia reputacji marek i zaufania klientów.Tematom związanym z bezpieczeństwem i pozytywnym wpływie data science na rozwój firm poświęciliśmy kilka wpisów na blogu, m.in.   

Boty i wirtualni moderatorzy będą zapobiegać cyberprzemocy – to tytuł wywiadu, przeprowadzony ze współtwórcami Samurai Labs, Patrycją Tempską i Gniewoszem Leliwą. Opowiadają w nim o tym jak wykorzystują neuro-symboliczną sztuczną inteligencję do zapobiegania niebezpiecznym zjawiskom, w tym cyberprzemocy w Internecie. Rozwiązania wdrożone przez firmę pozwalają na autonomiczną moderację treści, blokowanie szkodliwych komunikatów zanim dotrą do odbiorcy czy pozytywne modelowanie dyskusji w sieci.  

Do rozmowy o cyberbezpieczeństwie zaprosiliśmy Philipa Kinga, który jest ekspertem w zakresie poufności danych i specjalistą ds. rozwiązań technicznych w Intel Americas.  W wywiadzie pt. Infekowanie danych w modelach AI – nowy niepokojący kierunek cyberataków można dowiedzieć się w jaki sposób zabezpieczyć modele sztucznej inteligencji przed wpływem złośliwych danych — Do trenowania modeli sztucznej inteligencji potrzeba miliardów próbek danych, dlatego celowe wstrzyknięcie do procesu złośliwych informacji może być stosunkowo łatwe. Znaczna część danych wykorzystywanych do szkolenia SI pochodzi bezpośrednio z Internetu, a już niewielka ilość “złych danych” może wypaczyć model. Rezultatem będzie wpływ, który pozostanie niezauważony, dopóki nie stworzy większego problemu — ostrzega Philip King.

Jak firmy mogą wykorzystać data science do rozwoju? O tym piszemy m.in. w artykule pt.

Dzięki analityce kognitywnej szybciej zrozumiesz nawet niepełne dane. To właśnie ta analityka pozwala na porządkowanie, analizę i zrozumienie danych pochodzących z takich źródeł informacji jak, np. e-maile, dokumenty tekstowe, dane z czujników (loT) czy nawet media społecznościowe. Dzięki temu firmy mogą podejmować bardziej świadome decyzje biznesowe i dostosowywać się do potrzeb klientów. 

O tym wjaki sposób analityka danych wpływa na odporność firmy przeczytacie w artykule pod tym samym tytułem.W tekście przywołujemy dane, z których wynika, że aż 97% menedżerów wysokiego szczebla uważa, że wypracowanie odporności biznesowej jest istotnym zadaniem, przed którym stoją ich organizacje. 9 na 10 ankietowanych jest zdania, że analityka danych jest elementem kluczowym w kontekście pomocy w przygotowaniu się na nadchodzące kryzysy. W artykule znajdziecie 5 zasad odporności firmy i poznacie narzędzie, dzięki któremu będziecie mogli sprawdzić czy wasza firma jest odporna.

Data Science od eksploracji danych do zagadnień etycznych

Na blogu Data Science robię pokazujemy różnorodne aspekty data sience. Każdy z nich jest ważny i wart uwagi. Przykładem jest wywiad z dr hab. inż. Tomaszem Trzcińskim, prof. PW z IDEAS NCBR na temat koncepcji zero waste i recykling zasobów, czyli czas na zielone modele uczenia maszynowego. Polega ona na tworzeniu wydajnych modeli, które wykorzystują zasoby i obliczenia w taki sposób, aby minimalizować marnotrawstwo energii, operacji. Uważamy, że to niezwykle potrzebny projekt, bowiem pokazuje, że rozwój technologiczny powinien iść w parze ze zrównoważonym rozwojem. 


Kolejnym istotnym tematem jest etyka sztucznej inteligencji. Jak ważne dziś jest to zagadnienie, pokazuje debata jaka toczy się na poziomie Unii Europejskiej i zatwierdzony, przez Parlament Europejski, akt w sprawie sztucznej inteligencji. O tym jak państwa i organizacje międzynarodowe opracowują zestawy etycznych reguł dla twórców algorytmów AI piszemy w artykule Jak spowodować, żeby sztuczna inteligencja była… etyczna?

Data science to nasza rzeczywistość. Poprzez blog Data Science robię, chcemy ją Wam przybliżać. Opisywać sukcesy i wyzwania jakie stoją przed branżą oraz pokazywać ludzi, którzy ją tworzą. Zapraszamy do śledzenia naszej aktywności i kolejnych wpisów, zarówno tu na blogu jak i profilu LinkedIn.  

– Modele uczenia maszynowego w koncepcji zero waste mają szczególny potencjał w branży medycznej czy w samochodach autonomicznych. Jesteśmy pionierami, pokazujemy, na co należy zwracać uwagę przy ich rozwoju. Biznesowa wartość takich działań jest jak najbardziej realna. Mniejsze firmy nie mogą sobie pozwolić na zużywanie ogromnych mocy obliczeniowych, jak te niezbędne do działania ChatGPT czy innych zadań, w związku z tym naszymi badaniami nad zwiększaniem efektywności demokratyzujemy dostęp do uczenia maszynowego – prof. Tomasz Trzciński z IDEAS NCBR mówi o pracach swojej grupy badawczej i ich potencjale aplikacyjnym.

Dr hab. inż. Tomasz Trzciński, prof. PW kieruje pracami zespołu zajmującego się widzeniem maszynowym CVLab na Politechnice Warszawskiej. Jest liderem grupy badawczej „Uczenie maszynowe zero-waste w wizji komputerowej” w ośrodku badawczo-rozwojowym IDEAS NCBR.

Zero waste kojarzy się bardziej z ekologią niż z computer vision. Na czym polega ta koncepcja w przypadku modeli uczenia maszynowego?

Koncepcja zero waste, z perspektywy grupy badawczej w IDEAS NCBR, którą kieruję, polega na tworzeniu modeli, które przede wszystkim powinny być wydajne i wykorzystywać zasoby i obliczenia w taki sposób, aby minimalizować marnotrawstwo energii, operacji.

Jakiś przykład?

Wyobraźmy sobie, że jesteśmy w środku lasu i przy pomocy kamery w telefonie chcemy rozpoznawać obiekty wokół nas. Rozwijane przez naukowców i inżynierów modele składają się często z miliardów parametrów, jednak możemy przyjąć, że w lesie nie ma sensu wykorzystywać części modelu, która odpowiedzialna jest za analizę wysokich wieżowców czy zwierząt na Antarktydzie. Potrzebny jest nam tylko fragment, dotyczący konkretnego kontekstu, w którym się znajdujemy. Tylko część modelu odpowiedzialna za ten fragment powinna być aktywowana, a co za tym idzie cała operacja powinna zużywać mniej energii. Wtedy możemy mówić o podejściu zero waste. Podobnie działa ludzki mózg. Pewne jego fragmenty są aktywowane do konkretnych czynności, tak aby nie korzystać z pełni jego zakresu do prostych, konkretnych zadań.

Jak powinien zatem działać model uczenia maszynowego, jaki jest cel waszych badań?

Modele uczenia maszynowego w koncepcji zero waste mają szczególny potencjał dla widzenia komputerowego (computer vision). Przykładem może być branża medyczna, kiedy roboty wykorzystywane są przy operacjach. Im wydajniejszy będzie algorytm, tym krótszy będzie czas reakcji robota w trakcie zabiegu, a dzięki temu poprawi się bezpieczeństwo pacjenta i komfort chirurga. Podobnie w przypadku samochodów autonomicznych – kiedy czas analizy danych i reakcji jest zbyt długi, pojazdy takie mogą być niebezpieczne. Poza tym, chcemy, by modele wykorzystywały obliczenia wykonane w poprzednich etapach przetwarzania danych i wiedzę zdobytą podczas wcześniejszych epizodów uczenia, jeśli chodzi o modele uczone w trybie ciągłym. Krótko mówiąc, chodzi o recykling obliczeniowy.

Jak długo trwa projekt?

Badania dotyczące tej tematyki prowadzone są już 1,5 roku. Rozpoczęły się we wrześniu 2022, natomiast sama grupa badawcza zaczęła funkcjonować w pełnym składzie na początku 2023 roku. Dziś w grupie pracuje kilkadziesiąt osób.

Aktualnie w grupie badawczej realizujemy trzy ścieżki. Pierwsza z nich to wspomniana akumulacja wiedzy, czyli badania nad ciągłym uczeniem. Projektem kieruje Bartłomiej Twardowski. Drugi z zespołów zajmuje się wykorzystaniem modeli modularnych, czyli warunkowania, aby nie wykorzystywać całych modeli do pewnych zadań, ale tylko ich fragmentów. I jest jeszcze trzeci zespół, prowadzony przez Bartosza Zielińskiego, profesora Uniwersytetu Jagiellońskiego. Jego zadania związane są z zastosowaniem wypracowanych przez nas ścieżek w konkretnych urządzeniach – robotach, dronach czy platformach o ograniczonej mocy obliczeniowej.

Przy IDEAS NCBR powstał również ELLIS Unit Warsaw — pierwsza jednostka w Polsce będąca częścią ELLIS — europejskiej sieci badawczej promującej doskonałość naukową. Dzięki członkostwu w tej organizacji możemy tworzyć innowacje na poziomie międzynarodowym, być aktywną częścią europejskiego ekosystemu AI. Jednym z projektów, które w zakresie sieci realizujemy w ramach dużego konsorcjum, jest projekt ELIAS. Grant w wysokości 13 mln euro przeznaczony jest na rozwój sustainable AI.

Recykling zasobów brzmi bardzo ciekawie, ale może wystarczyłaby kompresja?

Kompresja to metoda, z którą wiążą się różnego rodzaju ograniczenia odzyskiwanej jakości. Możemy skompresować pełen model, który jest bardziej precyzyjny, zakładając, że wystarczy nam przybliżona odpowiedź. Jednak w naszej grupie badawczej staramy się unikać takiego podejścia. Skupiamy się na tym, aby zmaksymalizować zasoby, skorzystać jak najlepiej z tego, co już jest dostępne.

Recykling pozwala zatem na lepsze wykorzystanie zasobów niż kompresja?

Zdecydowanie tak, ale nie tylko utrata jakości jest problemem. Weźmy pod uwagę akumulację wiedzy w modelach. Aktualnie trenowane modele uczenia maszynowego, w szczególności sieci neuronowe, zapominają, czego zostały nauczone w poprzedniej iteracji, treningu, kiedy uczy się je na jednym zbiorze danych i przechodzi do kolejnego. To jest pewnego rodzaju strata, która nie wynika z tego, że chcieliśmy skompresować ten model, tylko jest to problem fundamentalny, dotyczący tego, jak trenujemy sieci neuronowe.

Dużo bardziej efektywne, zgodne z duchem idei zero waste byłoby budowanie na bazie wcześniejszego modelu i akumulacja wiedzy, czyli kolejnych danych w przypadku zmieniającego się zbioru danych, czy kolejnych zadań, do których staramy się dany model dostosować.

Poproszę o przykłady takiego recyklingu.

Kiedy uczymy się języków romańskich i powiedzmy na początek uczymy się francuskiego, a później włoskiego, a następnie hiszpańskiego, ze względu na podobieństwa w strukturze tych języków jesteśmy w stanie lepiej i szybciej nauczyć się np. języka włoskiego znając język francuski, niż gdybyśmy zaczynali od zera. Nie kompresujemy wiedzy, którą mamy, nie ograniczamy słownictwa, którym jesteśmy w stanie się posługiwać, w języku włoskim, hiszpańskim i francuskim, tylko wykorzystujemy wspólne elementy. Budujemy na bazie tego, co już wcześniej zostało wyliczone, wytrenowane, po to, aby ten recykling zachodził jak najskuteczniej.

Inny przykład pochodzi z opublikowanego przez nas zeszłorocznego artykułu na jednej z najważniejszych konferencji w obszarze informatyki – IJCAI. Jest to metoda aktywnej wizualnej eksploracji. Poprzez nią chcemy najbardziej wydajnie przeanalizować wysokiej jakości, wysokiej rozdzielczości obraz np. z kamery 360 stopni znajdującej się w robocie. Można to robić, analizując cały obraz, ale dużo wydajniejszym podejściem jest analizowanie mniejszych jego fragmentów, jeden po drugim.

W wyniku badań okazało się, że wykorzystując modele, które mają wewnętrzny wskaźnik, swoisty kompas – jak po kolei przemieszczać się po fragmentach obrazu, żeby jakość uzyskiwanych rezultatów na koniec była najwyższa – jesteśmy w stanie wykorzystać to, co w tym modelu wewnętrznie już jest.

Nie musimy tworzyć dodatkowych modułów, tylko bierzemy to czym dysponujemy i zastanawiamy się, czym taki model już dysponuje, jaką ma wiedzę, jaką ma możliwość, żeby nam pomóc zminimalizować energię potrzebną do jego obliczeń.

Jakie są wyzwania przy takim recyklingu zasobów?

Analiza tego, czy nasz proponowany model rzeczywiście jest wydajny, czyli, czy w jakiejś mierze ponownie wykorzystujemy dostępną wiedzę, jest częściowo zależna od kontekstu zadań, do których go trenujemy. Najbardziej ogólnym, wspólnym mianownikiem, jest sprawdzenie ilości operacji, którą musimy wykonać, żeby dojść do danego celu z jakimś określonym prawdopodobieństwem.

Do tego zapewne potrzebne są narzędzia, aby mierzyć taką efektywność. Z jakich korzystacie w swojej pracy badawczej?

Z reguły korzystamy z dostępnych bibliotek, w Pythonie lub w innych językach programowania, które tego typu liczby podają. Biblioteki te pozwalają na zmierzenie liczby FLOPów, czyli operacji wykonywanych przez procesory. Liczbę FLOPów możemy odnieść do energii, która jest potrzebna, aby te operacje wykonać. Ta energia mierzona jest już w postaci pobranych w jednostce czasu watów, czyli kilowatogodzin czy megawatogodzin.

A ile takiej energii potrzeba, ile da się zaoszczędzić?

Żeby zilustrować skalę zapotrzebowania energetycznego, możemy posłużyć się następującym przykładem. Nasz mózg wykorzystuje 600 watogodzin dziennie do tego, żeby funkcjonować, analizować rzeczy wokół nas, uczyć się, pracować. Natomiast trening GPT-3, który jest wcześniejszą iteracją, niż te, które są wykorzystywane dziś w ChatGPT, to był koszt energetyczny rzędu 1300 megawatogodzin. Taką w przybliżeniu ilość energii zużywa 680 4-osobowych gospodarstw domowych w ciągu jednego roku. Może wydawać się, że to stosunkowo niewiele, ale przy obecnej skali inwestycji w AI zużycie energii na trenowanie nowych modeli będzie rosło na całym świecie w ogromnym tempie.

Jaki jest teraz Wasz cel?

Metodologia polega na tym, aby ocenić, ile operacji, ile tych flopów, ile w końcu energii jest potrzebne do wykonania odpowiednich działań. Z jednej strony jest to kwestia energetyczna, natomiast mamy specyficzne metryki dotyczące recyklingu. Zaproponowaliśmy choćby metrykę badającą – jeśli wykorzystalibyśmy jakąś część tego modelu, to w jakim stopniu jesteśmy w stanie uzyskać odpowiedź o wystarczającej precyzji. Innymi słowy – jaki procent modelu wykorzystujemy w stosunku do całego modelu, by uzyskać wystarczający rezultat.

Zero waste i recykling kojarzy się jednak też z ekologicznym podejściem. Jak te badania mogą wpłynąć zarówno na biznes, jak i na postrzeganie budowy modeli uczenia maszynowego?

Nasza motywacja jest dwojaka, ale jak najbardziej zielona, ekologiczna. Po pierwsze, to kwestia kosztów, które przy aktualnym zapotrzebowaniu na moc obliczeniową, możemy zaobserwować w analizie pieniędzy przeznaczanych na startupy działające w generatywnej sztucznej inteligencji. Proszę sobie wyobrazić, że mniej więcej na każdego dolara, który zostaje wydany, aby sfinansować startup, ok. 50-60 centów de facto idzie na infrastrukturę. Efekt? Znacząca część inwestycji w startupy przekłada się na pokrycie kosztów obliczeń. Gdybyśmy mogli te pieniądze przeznaczyć nie na samą infrastrukturę, ale tworzenie lepszych modeli, bardziej etycznych, interpretowalnych, bliższych człowiekowi, to posunęlibyśmy się dużo dalej w rozwoju sztucznej inteligencji.

Druga motywacja wynika wprost z tego, z czym mamy do czynienia w Polsce, a mianowicie ok. 70 proc. energii jest wytwarzanych ze źródeł nieodnawialnych, w szczególności z węgla. Zatem gdybyśmy w Polsce potrzebowali tych 1300 megawatogodzin do wytrenowania GPT-3, to 70 proc. tej liczby pochodziłoby ze spalania węgla. Oznacza to zarówno duże obciążenie infrastruktury, jak i koszty środowiskowe.

A czy jest możliwość, aby modele, które badacie, w przyszłości samodoskonaliły się pod względem oszczędności, recyklingu tych zasobów?

Moim zdaniem to bardzo mocne wyjście w przyszłość i myślenie już o generalnej sztucznej inteligencji. Na dziś takie modele same z siebie raczej nie są w stanie się samodoskonalić pod tym względem. Zgodnie z tzw. scaling law, a więc prawem sugerującym, że wraz z większą ilością danych modele stają się coraz lepsze, modele te są coraz bardziej zasobożerne. Ich jakość natomiast, w szczególności w świecie przemysłowym i akademickim, jest oceniana na podstawie jakości uzyskiwanych rezultatów, a nie na podstawie wydajności energetycznej. W świecie modeli uczenia maszynowego jesteśmy na etapie poprawiania jakości rezultatów, bez względu na zasoby, które musimy w tym celu wykorzystać. Dlatego tak ważne jest wykorzystanie wszystkich zasobów i ich recykling.

A czy możemy dziś mówić już o jakichś modelach uczenia maszynowego, które są zielone, energooszczędne?

Modeli odgórnie klasyfikowanych jako modele uczenia maszynowego zero waste raczej jeszcze nie ma. Co ważne, nie ma też żadnej agencji, która by nadawała np. zielone certyfikaty modelom spełniającym określone parametry. Jednak pojawiają się już modele, które są skrojone specyficznie pod pewne aplikacje, np. w robotyce, w dronach, przy tworzeniu mobilnych platform. Te urządzenia wymagają oszczędności energii, w celu skuteczniejszego i dłuższego działania, stąd można tu mówić o modelach ukierunkowanych na zero waste.

Proszę też zauważyć, że największe koncerny zaczynają już spoglądać nieco inaczej na wykorzystanie energii. Gemini, najnowszy model od Google, został udostępniony w kilku wersjach, w wersji wydajniejszej obliczeniowo, standardowej oraz takiej bez żadnych ograniczeń. Moim zdaniem zaczyna się trend dostosowywania modeli do tych końcowych aplikacji, choć finalnej taksonomii, który model jest, a który nie jest zero waste, na razie nie ma.

Z tego wynika, że Wasze badania są niezwykle innowacyjne?

Wydaje mi się, że jesteśmy w tej kwestii pionierami i nadajemy kierunek, pokazujemy, na co należy zwracać uwagę przy rozwoju modeli uczenia maszynowego. Biznesowa wartość takich działań jest jak najbardziej realna. Mniejsze firmy nie mogą sobie pozwolić na zużywanie tak dużych mocy obliczeniowych dla konkretnych zadań, w związku z tym naszymi badaniami nad zwiększaniem efektywności demokratyzujemy dostęp do uczenia maszynowego.

Eksplozja generatywnej sztucznej inteligencji (GAI), która w ciągu ostatnich kilkunastu miesięcy podbija niemal każdą branżę, stawia wyzwania nie tylko przed autorami, wydawcami czy artystami, ale także przed specjalistami od cyberbezpieczeństwa. Coraz bardziej zaawansowane narzędzia wykorzystywane do prowadzenia działań przestępczych stawiają nowe, trudne wyzwania przed organizacjami narażonymi na wyłudzenia i nadużycia. Sektory takie, jak bankowość, ubezpieczenia, handel i administracja rządowa muszą szybko wdrażać nowe technologie w celu ochrony własnych klientów przed działaniami grup przestępczych. 

Nic tak nie przykuwa uwagi, jak efektowne wideo. Dlatego Sora, nowy model generatywnej sztucznej inteligencji (GAI) zaprezentowany przez OpenAI, zrobił wielki szum w mediach na całym świecie. Kiedy Dall-E, Midjourney czy Stable Diffusion przekształcają komendy tekstowe w realistyczne – czy fantastyczne – obrazy, Sora na bazie poleceń użytkownika tworzy filmy, często trudne do odróżnienia od produkcji Hollywood czy filmów dokumentalnych. 

Sora nie jest jeszcze publicznie dostępna, ale demonstracja jej możliwości była przyczynkiem i do nadziej, i do obaw. Nadziei, bo model może wyzwolić pokłady kreatywności u ludzi niemających dostępu do profesjonalnych narzędzi pozwalających tworzyć filmy. Obaw, bo te same pokłady kreatywności mogą uwolnić cyberprzestępcy, wykorzystujący podobne narzędzia do oszustw na wielką skalę. 

Wykorzystywanie narzędzi typu deepfake – pozwalających na tworzenie zmanipulowanych nagrań prawdziwych ludzi – w wyłudzeniach i innych finansowych przestępstwach nie jest zjawiskiem nowym, ale zagrożenie z nich płynące narasta wraz z rosnącymi możliwościami algorytmów tworzących fałszywki. Według raportu firmy Onfido, tworzącej narzędzia do weryfikowania tożsamości, liczba prób dokonania oszustw za pomocą deepfake’ów wzrosła w 2023 r. aż o 3000 proc. w porównaniu z rokiem poprzednim. 

W jednym z najbardziej spektakularnych przypadków tego rodzaju oszustwa, o którym doniósł w styczniu dziennik South China Morning Post, oddział międzynarodowej korporacji działający w Hongkongu stracił 23,6 mln euro po tym, jak jeden z pracowników dostał polecenie dokonania przelewu od osoby podającej się za jej dyrektora finansowego. Gdy pracownik wyraził sceptycyzm, zaproszono go na wideokonferencję, w której osoba wyglądająca i brzmiąca jak CFO firmy ponowiła żądanie. Tym razem pracownik dał się przekonać i wykonał przelew. 

Zmanipulowane wideo to nie jedyne zagrożenie płynące z generatywnej sztucznej inteligencji. Wielkie modele językowe, takie jak ChatGPT czy Gemini, mogą służyć do tworzenia przekonujących, spersonalizowanych wiadomości phishingowych kierowanych do konkretnych odbiorców. „Mimo że konsumenci są czujni, przestępcy internetowi rozwijają swoją działalność z wykorzystaniem generatywnej sztucznej inteligencji i technologii deepfake” mówi Stu Bradley, wiceprezes ds. przeciwdziałania nadużyciom w SAS. “Wiadomości phishingowe stają się coraz bardziej dopracowane. Imitacje stron internetowych wyglądają łudząco podobnie do oryginałów, a aby podrobić głos konkretnej osoby, wystarczy kilka sekund nagrania audio i łatwo dostępne narzędzia online.”

Ochrona przed przed fraudami 

Ale to tylko jedna strona medalu. Bo generatywna sztuczna inteligencja może też służyć do skutecznej ochrony firm i organizacji przed fraudami. 

Badania przeprowadzone przez SAS wskazują na to, że generatywna sztuczna inteligencja może w najbliższych latach stać się kluczowym elementem zabezpieczeń przed nadużyciami finansowymi. Z przeprowadzonego przez firmę sondażu wynika, że 8 na 10 specjalistów zajmujących się zwalczaniem nadużyć finansowych zamierza wdrożyć generatywną sztuczną inteligencję przed końcem 2025 roku,  zaś trzy na pięć organizacji spodziewa się, że zwiększy swoje budżety na technologię przeciwdziałania oszustwom w ciągu w ciągu najbliższych dwóch lat. 

To ważne, bo coraz bardziej świadomi zagrożeń są sami konsumenci. Aż 9 na 10 respondentów uważa, że firmy powinny robić więcej, aby uchronić swoich klientów przed oszustwami. Ponad 70 proc. respondentów z Polski stwierdziło, że zgodziłoby się na większe opóźnienia i kontrole transakcji w zamian za lepszą ochronę. Jednocześnie, jak wskazuje niedawno opublikowane badanie SAS Faces of Fraud: Consumer Experiences With Fraud and What It Means for Business, 76 proc. Polaków co najmniej raz w 2022 r. spotkało się z próbą oszustwa. Rozpowszechnienie ataków doprowadziło do tego, że niemal 80 proc. badanych zwiększyło swoją czujność podczas dokonywania transakcji internetowych.

Szczególnie narażone na oszustwa online są zwłaszcza organizacje działające w sektorach bankowości, ubezpieczeń, telekomunikacji, handlu i administracji rządowej. To one powinny w pierwszej kolejności zainwestować w zaawansowane rozwiązania, które zwiększają bezpieczeństwo ich samych i ich klientów dzięki wykorzystaniu technik uczenia maszynowego (ML) czy generatywnej sztucznej inteligencji. Pozwalają one wyprzedzać działania cyberprzestępców i zapobiegać atakom i nadużyciom dokonywanym za pomocą wszystkich kanałów. 

Przykładem takiego rozwiązania jest platforma SAS Viya, wykorzystywana przez Departament Gospodarki stanu Goiás w Brazylii. Urząd korzysta z wykorzystującej algorytmy sztucznej inteligencji platformy w celu wykrywania firm unikających płacenia podatków w transporcie towarowym. System, analizujący dane podatkowe w czasie rzeczywistym, w ciągu miesiąca od momentu wdrożenia generował 300 alertów o możliwych niezgodnościach podatkowych. Dzięki lepszej identyfikacji nieprawidłowości – np. sfałszowanych faktur, brakujących elektronicznych poświadczeń wymaganych dla pojazdów do transportu towarów i ładunków przekraczających deklarowaną ilość – kwota nałożonych kar wzrosła o 54 proc. w porównaniu z tym samym miesiącem poprzedniego roku.

“Projekt ten znacznie zmienił wydajność operacyjną departamentu, zapewniając nam większą przejrzystość i wymierne korzyści dla społeczeństwa” – powiedziała Giovana Amorim Zanato, kierownik ds. audytu w Departamencie Gospodarki stanu Goiás. “Połączyliśmy technologię SAS z innymi rozwiązaniami w celu zapobiegania uchylaniu się od płacenia podatków i stworzyliśmy innowacyjną praktykę, która posłuży jako przykład dla innych departamentów stanowych.”

To jednak zaledwie jeden ze sposobów, na jakie sztuczna inteligencja może pomóc zabezpieczać organizacje przed nadużyciami. „Przykład tego, jak szerokie zastosowanie ma sztuczna inteligencja, mogą stanowić sektory bankowości i ubezpieczeń, które zmagają się z ogromną liczbą prób wyłudzeń. Algorytmy AI pomagają oceniać okoliczności zdarzenia w przypadku likwidacji szkód, weryfikować autentyczność dokumentów i zdjęć przesyłanych przez klienta oraz generują rekomendacje działań dla osoby obsługującej proces. AI pomaga też weryfikować powiązania pomiędzy interesariuszami w transakcjach biznesowych. Wykrywanie nadużyć z pomocą AI dotyczy również procesów wewnętrznych, m.in. przy rekrutacji nowych pracowników i ocenie ich aplikacji” – mówi Marta Prus – Wójciuk, Head of Fraud Management Practice, SAS.

Po pierwsze bezpieczeństwo

Oparte na AI i ML rozwiązania wspomagające bezpieczeństwo mogą obejmować także np. analizę wizyjną, czyli tworzenie systemów, które poprzez analizę obrazu mogą wykrywać podejrzane zachowania w czasie rzeczywistym, takie jak nieautoryzowany dostęp do danych. W ochronie danych może pomóc biometria behawioralna, poprzez analizę zachowania użytkownika, w tym analizę sposobu pisania na klawiaturze, poruszania myszą czy rozpoznawanie głosu. Czy wreszcie monitorowanie transakcji w czasie rzeczywistym pod kątem podejrzanych wzorców, co pozwala na błyskawiczne reagowanie na próby oszustwa, identyfikację nieautoryzowanych transferów pieniężnych czy wykrywanie prania pieniędzy. 

Systemy oparte na sztucznej inteligencji mogą także wykorzystywać rozwiązania robotyczne – roboty zintegrowane z systemami AI mogą patrolować obiekty i monitorować ich stan, minimalizując ryzyko kradzieży, aktów wandalizmu, awarii czy wycieków. Zaawansowane algorytmy sztucznej inteligencji mogą wreszcie analizować duże ilości danych, aby przewidywać i zapobiegać cyberatakom.

Wszystko to przekłada się nie tylko na zwiększenie poziomu bezpieczeństwa, ale i na szybsze wykrywanie i reagowanie na zagrożenia, redukcję kosztów związanych z cyberatakami i zwiększenie poziomu zaufania klientów do organizacji. 

„Szybki rozwój narzędzi generatywnej sztucznej inteligencji już ułatwia oszustom i zorganizowanym grupom przestępczym omijanie tradycyjnych metod wykrywania nadużyć. Oznacza to, że organizacje stoją przed wyzwaniem zastosowania najnowszych technologii, aby to zjawisko powstrzymać. Te z nich, które sprostają oczekiwaniom klientów w zakresie bezpieczeństwa, mają największe szanse na zdobycie ich lojalności, a w efekcie budowanie przewagi konkurencyjnej. W dalszej perspektywie oznacza to generowanie wzrostów sprzedaży przy jednoczesnym ograniczeniu strat związanych z nadużyciami” stwierdza Stu Bradley z SAS.

Udostępnij link

https://www.datasciencerobie.pl/ai-przeciw-oszustwom/